JACS Hosting Innovations Contents List available at JACS Directory # Journal of Natural Products and Resources journal homepage: http://www.jacsdirectory.com/jnpr # Wild Tuber Species Diversity and Its Ethno-Medicinal Use by Tribal People of Koraput District of Odisha, India B. Padhan, D. Panda* Department of Biodiversity and Conservation of Natural Resources, Central University of Orissa, Koraput - 764 021, Odisha, India. #### ARTICLE DETAILS Article history: Received 24 December 2015 Accepted 03 January 2016 Available online 04 January 2016 Keywords: Ethno-Medicines Traditional Knowledge Tuber Plants #### ABSTRACT The present study was documented the indigenous knowledge on the utilization of tuber species both as food and medicine by the tribal people of Koraput. Field study was carried out in 24 villages of Koraput district of Odisha and the ethnomedicinal information was collected through interview among different tribal group and traditional healers. The use value, informant consensus factors (FIC) and fidelity level (FL) were analyzed to know the important ethnomedicinal tubers used by the tribals. A total of 56 species of tubers distributed in 35 genera belonging to 21 families were identified as commonly used tubers by the tribals and traditional healers for the treatment of 37 types of diseases. These diseases were categorized into 11 ailment categories based on the body systems treated. Most of the medicines were prepared in the form of paste and administered orally. FIC values of the present study indicated that there was a high agreement among the users for the use of plants in the treatment of toothache, cough, nose bleeding and to increase milking of pregnant mother. Six species had highest fidelity level of 100%. The most important species according to their use value were Dioscorea oppositifolia, Colocasia esculenta, Cheilocostus speciosus, Dioscorea pentaphylla, Manihot esculenta, Curcuma longa, Curcuma angustifolia, Dioscorea alata, Dioscorea belophylla and Dioscorea tomentosa. The tuber species with highest fidelity level and use values in the present study may indicate the possible occurrence of valuable phytochemical compounds and it requires a search for potential new drugs to treat various ailments. # 1. Introduction Root and tuber crops occupy a remarkable position in the food security of the developing world due to their high caloric value and carbohydrate content. Some of them are already under cultivation, but other species are growing wild as a neglected group of economic plants. Some of the tuberous species are important due to their medicinal as well as industrial application. Wild edible tuber species are an important source of food in India and have a significant place in the dietary habit of small and marginal farm families and forest-dwelling communities during periods of food scarcity [1, 2]. Edible tubers not only enrich the diet of the people but also possess medicinal properties [3]. Odisha state is known as a genetic paradise for its diversity in plant genetic resources, notably the Koraput is one of the centres of diversity for many food crops and forest species [4] and is also well known for its rich human cultural diversity [5]. Tubers having nutritional properties have been studied time to time in different parts of India by several researchers [6-9]. The traditional knowledge of Koraput region is rapidly degrading due to modernization and the younger generation is not interested to learn from older generation. Thus, some important ethnobotanical information may be lost in absence of proper documentation. Keeping in view of the importance, the present survey enlisted the tuber species used by tribal people of Koraput district of Odisha. # 2. Experimental # 2.1 Study Area The study was conducted in Koraput district of Odisha (Fig. 1), during 2014-2015. Information on tuber species were collected from 38 respondents of diversified age groups of six tribal communities, *viz.* Paroja, Bhumia, Gadaba, Bhatra, Durua and Kondha in 24 villages under six community development blocks (Boipariguda, Lakshmipur, Koraput, Lamtaput, Jeypore and Kundra) of Koraput District based on proximity to forests. Fig. 1 Map of study site Koraput district of Odisha showing location of blocks # 2.2 Collection, Observation and Documentation The plants were identified by its vernacular name and later validated by following The Botany of Bihar and Orissa and The Flora of Orissa [10, 11]. Based on the information obtained from the traditional healers and focus group discussion of elder peoples in the study area, all the reported *Corresponding Author Email Address: dpanda80@gmail.com (D. Panda) ailments were categorized into 11 categories and tabulated. Several diseases were placed in one ailment category based on the body systems treated. #### 2.3 Informant Consensus Factor (Fic) The informant consensus factor (Fic) was used to determine agreement between utilization of plants in the ailment categories and the plant users of the study area. The Fic was calculated by using the following formula [12]. $$Fic = Nur - Nt/Nur - 1$$ Where Nur refers to the number of use-reports for a particular ailment category and Nt refers to the number of species used for a particular ailment category by all informants. #### 2.4 Use Value (UV) The relative importance of each plant species known locally to be used as herbal remedy is reported as use value (UV) and it was calculated using the following formula [13]. $$UV = \Sigma U/n$$ Where UV is the use value of a species, U is the number of use reports cited by each informant for a given plant species and n is the total number of informants interviewed for a given plant. # 2.5 Fidelity Level (FL) To determine the most frequently used plant species for treating a particular ailment category by the informants of the study area, we calculated the fidelity level (FL). The FL was calculated using the following formula [14]. Where Np is the number of use-reports cited for a given species for a particular ailment category and N is the total number of use reports cited for any given species. # 3. Results and Discussion The present study documented the information of 56 tuberous plants distributed in 35 genera belonging to 21 families, which were commonly used as food and ethnomedicine (Table 1). Among 21 families, the most used family was Dioscoreaceae with 11 species, followed by Zingiberaceae, Araceae and Convulvulaceae. The data was arranged according to the botanical name, common name, family, habit, medicinal importance and use value (Table 1). It was found that the most utilized source of medicines are shrubs (39%) followed by climbers (32%), herbs (25%) and creeper (4%). The most commonly used method of preparation for medicines were paste form followed by juice and powder. Several plant e.g. Tacca leontopetaloides, Alocasia macrorrhizas, Amorphophallus campanulatus, Amorphophallus paeonofolius and Dioscorea glabra are used both for food and medicine. It was observed that the tribal people have much knowledge about the detoxification of the wild tubers before consumption like Dioscorea bulbifera, Dioscorea hispida and Urginea indica used after detoxification. The most commonly used tuber species was *Ipomoea batatas* with 48 use-reports by 38 informants, giving the highest use value of 1.26. Other important plants with high use value were *Dioscorea oppositifolia* having 1.24 use value with 47 use reports by 38 informants. In general, scarce availability of the plants in the study area leads them to low UV like *Chlorophytum borivilianum* showed low UV of 0.11 by four informants. In order to analyze the general usage pattern of plants, Informant consensus factor (Fic) was used to highlight the plants use in particular disease and agreement in the use of plants. This helps in the selection of plant for pharmacological and phytochemical studies [15]. The Fic values in the study are ranged from 0.60 to 1.00. The use categories with highest use-reports was gastro intestinal disorder (78 use reports, 32 species) followed by skeleto-muscular system disorders (34 use-reports, 12 species) (Table 2). Fidelity level is useful for identifying the most preferred species used by the informants for treating certain ailments. Fidelity level is analyzed the disease categories with major agreements of users to emphasize the most important plants used in each category (Fig. 2). Of the reported tuber species, six species had highest fidelity level of 100%, most of which were used in single ailment category with multiple informants. The plants with highest FL were *Amorphophallus paeonifolius, Phoenix acaulis, Cyperus ochraceus, Acorus calamus, Asparagous recemosus* and *Ipomoea paniculata*. Fig. 2 Fidelity level (%) of most prefered species used in different ailments **Table 1** List of the wild tuber species used by the tribals of Koraput with their medicinal importance | S.
no | Scientific
Name | Common
Name | Family | Habit | Medicinal | Use
Value | |----------|---|----------------|-------------------|-------|---|--------------| | | | Name | | | importance | vaiue | | 1 | Abelmoschus
moschatus
Medik. | Bana
bhendi | Malvaceae | Shrub | Root paste is
used orally for
diarrhoea and
applied to the
affected area of
snake bite. | 0.18 | | 2 | Acorus
calamus L. | Bacha | Araceae | Herb | Dry root paste is
used orally to
treat dysentery,
cough and fever. | 0.47 | | 3 | Alocasia
macrorrhiza
(L.) G. Don. | Manasaru | Araceae | Herb | Tuber paste is
applied
externally to
cure swelling
and for
treatment of
piles | 0.37 | | 4 | Alpinia
calcarata
(Haw.)
Roscoe | Torani | Zingiberace
ae | Herb | Tuber paste is massaged with warm mustard oil to treat rheumatism, body pain and weakness. | 0.21 | | 5 | Alpinia
galanga (L.)
Willd. | Bana ada | Zingiberace
ae | Shrub | Roots are used
for preparing
pickle.
Rhizomes are
taken orally to
cure fever and
applied with
warm castor oil
to treat
rheumatism. | 0.26 | | 6 | Amorphophal
lus
campanulatus | Olua | Araceae | Shrub | Tuber paste is applied externally to treat piles. | 0.37 | | 7 | Amorphophal
lus
paeonifolius
(Dennst.)
Nicolson | Olua
kanda | Araceae | Shrub | Tuber paste is applied externally to treat piles, toothache and rheumatism, | 0.87 | | | | | | | una D. I anaa / Journ | , | | | ()() | | | | | |----|---|--------------------|------------------|-------|---|------|----|--|---------------------|---------------------|---------|--|------| | 8 | Aponogeton
undulatus
Roxb. | Kesru
Kanda | Aponogeton aceae | Herb | Tubers are
taken after
boiling and | 0.32 | 23 | Dioscorea
alata L | Kamba
alu | Dioscoreaceae | | Boiled tuber is
eaten to treat
indigestion. | 1.00 | | | | | | | removing the | | 24 | Dioscorea | Bata | Dioscoreaceae | Climber | r Boiled tubers | 1.00 | | 9 | Arisaema
tortuosum | Olua
kanda | Araceae | Shrub | outer cover. Tuber Paste is applied on | 0.76 | | belophylla
(Prain)Voigt
ex Haines | kanda | | | are eaten to
treat stomach
pain after | | | | (Wall.) Schott | | | | wound caused
by snake bite to
check poisonous
effect. | | 25 | Dioscorea
bulbifera L. | Pita
Kanda | Dioscoreaceae | Climber | pregnancy. rTuber paste is used orally to treat worms, | 0.79 | | 10 | Asparagus
recemosus
Willd | Satabori | Asparagaceae | Shrub | Root juice is
taken orally in
dysentery. It is
also used for
treatment of | 0.76 | | | | | | piles and
dysentery.
Powder is used
to kill the hair
lices. | | | 11 | Bolboschoenu
s maritisum
(L.) Palla | Ghas
kanda | Cyperaceae | Herb | impotence.
Root juice is
used orally
against diarrhea | 0.16 | 26 | Dioscorea
glabra Roxb. | Mitni
Kanda | Dioscoreaceae | Climbe | rTuber paste is
used externally
for piles
treatment. | 0.50 | | 12 | Cheilocostus
speciosus
(J.Konig) C.D.
Specht | Keu
kanda | Costaceae | Shrub | and diuretic. Tuber paste is applied to the affected area of snake bite and eaten during | 1.18 | 27 | Dioscorea
hamiltonii
Hook. f. | Sika
Kanda | Dioscoreaceae | Climbe | r Used as food
tonic by tribals,
treatment of
swelling,
stomach ache
and piles. | 0.74 | | | | | | | diarrhea,
vomiting,
constipation and
headache. | | 28 | Dioscorea
hispida
Dennst. | Kulia
kanda | Dioscoreaceae | Climber | | 0.18 | | 13 | Chlorophytum
borivilianum
Santapau & R.
R. Fern. | Saphed-
musli | Asparagaceae | Herb | Root powder
with warm milk
is used for
strengthening | 0.11 | 29 | Dioscorea
oppositifolia | Pit Kanda | Dioscoreaceae | Climber | on wounds and
injuries.
Tuber paste is
used externally | 1.24 | | 14 | Colocasia
esculenta (L.)
Schott | Saru | Araceae | Shrub | the body.
Tubers are
consumed as
vegetable after | 1.18 | | L. | | | | to treat swelling,
joint pain,
rheumatism and
snake and | | | 15 | Curculigo
orchioides
Gaertn. | Talmuli | Hypoxidaceae | Herb | boiling. The paste of tuberous root is applied on the | 0.24 | 30 | Dioscorea
pentaphylla L. | Soronda
kanda | Dioscoreaceae | Climber | scorpion bite. rTuber paste is applied on joint swelling, rheumatism | 1.13 | | 16 | Curcuma
amada | Ambo ada | Zingiberaceae | Herb | affected part of
scorpion bite.
Rhizome are
boiled, cooked | 0.42 | 31 | Dioscorea
pubera
Blume | Kasha
kanda | Dioscoreaceae | Climber | | 0.55 | | | | | | | with pulses and
tomato then
consumed as
curry. | | 32 | Dioscorea
tomentosa J.
Koenig. ex
Spreng. | Targai
Kanda | Dioscoreaceae | Climber | r Boiled tubers
are use as tonic
for
strengthening | 1.00 | | 17 | Curcuma
angustifolia
Roxb. | Paluo | Zingiberaceae | Shrub | Tuber powder is
drink with
water during
diarrhoea,
indigestion and
stomach | 1.05 | 33 | Dioscorea
wallichii
Hook. f. | Cherenga
Kanda | Dioscoreaceae | Climber | the body. rTubers are cooked as curry after successive boiling and also used for | 0.26 | | 18 | Curcuma
aromatic
Salisb. | Bana
haldi | Zingiberaceae | Shrub | disorder. Rhizome is used as tonic applied externally to treat sprains. | 0.42 | 34 | Gloriosa
superba L. | Pancha
angulia | Liliaceae | Herb | stomach pain.
It is used as a
tonic for treat
helminthes and
applied | 0.58 | | 19 | Curcuma
longa L. | Haladi | Zingiberaceae | Shrub | Rhizome
powder is used
orally against
worm infection | 1.08 | | | | | | externally
against snake
bites and
scorpion stings. | | | | | | | | and stomach
disorder and
applied
externally for
skin diseases. | | 35 | Hedychium
coronarium J.
Koenig. | Ram
kedar | Zingiberaceae | Shrub | Roots are used
as vegetable
during food
scarcity and also
used to treat | 0.53 | | 20 | Curcuma
zedoaria
(Christm) | Gandha-
sunthi | Zingiberaceae | Shrub | Rhizome paste is used orally in indigestion, | 0.18 | 36 | Hedychium | Neelakan | Zingibera- | Herb | rheumatism and
loose motion.
Tuber paste are | 0.24 | | | Roscoe. | | | | stomach
problems and
used as | | | spicatum Sm. | tha kedar | ceae | | used externally
for rheumatism,
loose motion | | | 21 | Cyperus
ochraceus
Vahl. | Maisadeti
Kanda | Cyperaceae | Herb | stimulant. Root juice is applied during nose bleeding. | 0.18 | 37 | Hemidesmus
indicus (L.) R.
Br. ex Schult. | Dudhama
li kanda | Asclepiada-
ceae | Creepe | Root juices are
taken orally
against worm
infection | 0.34 | | | | | | | Tubers are roasted in charcoal and consumed. | | 38 | Ipomoea
paniculata | Marda
mal | Convulvula-
ceae | Climber | rTubers are used
for increases
secretion of milk
and poor | 0.32 | | 22 | Cyperus
rotundus L. | Mutha | Cyperaceae | Herb | Warm root paste
is applied to treat
toothache and
root juice is
taken orally for
stomach pain. | 0.16 | 39 | lpomoea
batatas (L.)
Lam. | Mati
Kanda | Convulvula-
ceae | Creepe | digestion. rTubers are boiled with salt or roasted in charcoal and consumed. | 1.26 | | 40 | Ipomoea
cairica (L.)
Sweet | Mitha
kanda | Convulvula-
ceae | Climber Tubers are
consumed as
vegetable. | 0.26 | |----|--|-------------------------|---------------------|---|------| | 41 | Ipomoea
mauritiana
Jacq. | Bhuin
kumda | Convulvula-
ceae | Climber Tuber paste is
applied
externally for
skin disease and
snake bite | 0.37 | | 42 | Kaempferia
galanga L. | Adaphul
kanda | Zingiberaceae | Shrub Rhizome juice is taken orally during indigestion, fever and malaria. | 0.24 | | 43 | Lasia spinosa
(L.) Thwaites | Kanta
kanda | Araceae | Shrub Rhizomes are washed properly then fried and consumed. | 0.16 | | 44 | <i>Leea</i>
macrophylla
Roxb. ex
Horenem. | Duina | Vitaceae | Shrub Tuber juice is used orally to treat diarrhoea. | 0.16 | | 45 | Manihot
esculenta
Crantz | Simli
Kanda | Euphorbia-
ceae | Shrub Boiled tuber is used to treat indigestion. | 1.11 | | 46 | Maranta
arundinacea
L. | Krishna
Kanda | Marantaceae | Shrub Tuber juice is used for indigestion, diarrhea and dysentery. | 0.55 | | 47 | Melothria
heterophylla
(Lour.) Cogn. | Bana
Tundri
Kanda | Cucurbitaceae | Climber Tubers are cooked as curry | 0.11 | | 48 | Momordica
dioica Roxb.
ex Willd. | Bana
Kankad
Kanda | Cucurbitaceae | Climber Root paste is
used externally
for rheumatism
and taken orally
to treat diarrhed
and fever. | | | 49 | Nelumbo
nucifera
Gaertn. | Padma
kanda | Nymphaea-
ceae | Shrub Rhizome is used
as tonic and
used to treat
diarrhea,
dysentery and
skin diseases. | 0.42 | | 50 | Nymphaea
pubescens
Willd. | Kain
kanda | Nymphaea-
ceae | Shrub Root juice are taken orally during blood dysentery, stomach pain and diarrhea. | 0.29 | | 51 | Phoenix
acaulis Roxb. | Sindi
Kanda | Aracaceae | Shrub Tender roots
are eaten for
indigestion and
mouth disease. | 0.47 | | 52 | Pueraria
tuberosa
(Willd.) DC. | Bhuin
kumda | Fabaceae | Climber Root paste with honey are taken during fevers and applied externally to reduce swellings of joints. | 0.21 | | 53 | Sansevieria
roxburghiana
Schult &
Schult .f | Muruga | Asparagaceae | Herb Root powder is
used orally for
fever, cough,
vomiting and
worm infection. | 0.39 | | 54 | Smilax
zeylanica L. | Mutri mal | Smilacaceae | Climber Tuber paste
with castor oil
applied for skin | 0.47 | | 55 | Tacca
leontopetaloi
des (L.)
Kuntze | Dhui
kanda | Taccaceae | disease Shrub Tuber powder is used orally in the treatment of piles, diarrhea and dysentery. | | | 56 | <i>Urginea</i>
<i>indica</i> (Roxb.)
Kunth. | Bano
piajo | Liliaceae | Herb Bulbs are used orally to treat abdominal disorder and hypertension. | 0.16 | **Table 2** Number of use reports, number of species used for particular ailment category and informant consensus factor of tuber species of Koraput. | S. No. | Ailment Category | Number of use | Number of | Informant | |---------|--------------------------------------|---------------|--------------|--------------| | 5. 110. | riminent dategory | report | species used | consensus | | | | report | species useu | factor (Fic) | | 1 | Gastro intestinal ailment | 78 | 32 | 0.60 | | 2 | Poisonous bite | 31 | 08 | 0.77 | | 3 | Dental care | 07 | 02 | 0.83 | | 4 | Dermatological infection/disease | 29 | 07 | 0.79 | | 5 | Ear, Nose, throat problems(ENT) | 05 | 01 | 1.00 | | 6 | Fever | 18 | 04 | 0.82 | | 7 | Cough | 08 | 02 | 0.86 | | 8 | Skeleto muscular
system disorders | 34 | 12 | 0.67 | | 9 | Genito urinary disease | 13 | 03 | 0.83 | | 10 | Common health problem | 28 | 07 | 0.78 | | 11 | Helminthes disease | 20 | 06 | 0.74 | #### 4. Conclusion This present study revealed that traditional knowledge on the use of tubers is still practiced by the tribal people of Koraput district. The tuber species with highest fidelity level and use values in the present study may indicate the possible occurrence of valuable phytochemical compounds and it requires a search for potential new drugs to treat various ailments. #### Acknowledgement The authors are grateful to the tribal informants of the villages of Koraput district. The authors are grateful to the Head, Department of Biodiversity and Conservation of Natural Resources for providing necessary facilities for the work and also grateful to Prof. Malaya K. Misra, Senior Consultant, Central University of Orissa Koraput for valuable suggestion. # References - B. Roy, A.C. Halder, D.C. Pal, Plants for human consumption in India, Bullt. BSI 54 (1988) 63-65. - [2] R.K. Arora, A. Pandey, Wild edible plants of India, diversity and conservation and use, NBPGR, New Delhi, India, 1996. - [3] S. Edison, M. Unnikrishnan, B. Vimala, S.V. Pillai, M.N. Sheela, M.T. Sreekumari, K. Abraham, Biodiversity of tropical tuber crops in India, NBA Scientific Bulletin No. 7, National Biodiversity Authority of India, Chennai, India, 2006. - [4] S. Mishra, S.S. Chaudhury, Ethnobotanical flora used by four major tribes of Koraput, Odisha, India, Gen. Resour. Crop Evo. 59 (2012) 793–804. - [5] S. Mishra, S. Swain, S.S. Chaudhary, T. Ray, Wild edible tubers (*Dioscorea* spp.) and their contribution to the food security of tribes of Jaypore tract, Orissa, India, Plant Gene. Resour. News Lett. 156 (2008) 63-67. - [6] S. Sujatha, F. Briska Renuga, Medicinal and edible tubers from fourty two settlements of Tribals from Pechiparai Social forest in Kanyakumari District, India Scho. Acad. J. Biosci. 1(5) (2013) 213-216. - [7] S. Swarnkar, S.S. Katewa, Ethnobotanical observation on tuberous plants from tribal area of Rajasthan (India), Ethnobot. Leaflets 12 (2008) 647-66. - [8] S. Kumar, P.K. Jena, P.K. Tripathy, Study of wild edible plants among tribal groups of Simlipal Biosphere Reserve Forest, Odisha, India, with special reference to *Dioscorea* species, Int. J. Biotech. 3(1) (2012) 11-19. - [9] S. Kumar, Survey and documentation of some wild tubers/rhizomes and their various uses in Jharkhand, Ind. J. Plant Sci. 4(2) (2015) 36-45. - [10] H.H. Haines, The botany of Bihar and Odisha, Calcutta, Vol. I-III, Sri Gauranga Press, India, 1921-1925. - [11] H.O. Saxena, M. Brahmam, The flora of Orissa, Orissa Forest Development Corporation Ltd., and Regional Research Laboratory, Bhubaneswar, India, 1994-1996. - [12] M. Heinrich, A. Ankli, B. Frei, C. Weimann, O. Sticher, Medicinal plants in Mexico: healers' consensus and cultural importance, Soc. Sci. Med. 47 (1998) 91–112. - [13] O. Phillips, A.H. Gentry, C. Reynel, P. Wilkin, B.C. Galvez-Durand, Quantitative ethnobotany and Amazonian conservation, Cons. Biol. 8 (1994) 225–248. - [14] J. Friedmen, Z. Yaniv, A. Dafni, D. Palewitch, A preliminary classification of the healing potential of medicinal plants, based on a rational analysis of an ethnopharmacological field survey among Bedouins in the Negev desert, Israel J. Ethnopharm. 16 (1986) 275–287. - [15] S. Asiimwea, A. Namutebi, A.K.B. Karlsson, M.K. Mugisha, H.O. Origa, Documentation and consensus of indigenous knowledge on medicinal plants used by the local communities of western Uganda, J. Nat. Prod. Plant Res. 4(1) (2014) 34-42.